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Abstract. The maximal kinematical group of the general Schrodinger equation is 
discussed. 

It is well known that the largest group of space-time transformations which leaves 
covariant the free Schrodinger equation is a 12-parameter Schrodinger group S 
containing the Galilean transformations (Hagen 1972, Niederer 1972). The conformal 
dimension of the Schrodinger wavefunction 4(x) is -:, so 4 (x )  can be interpreted as a 
probability amplitude (Barut and Xu 1981). In this Letter we shall discuss the 
covariance of the general Schrodinger equation under group S. 

The general Schrodinger equation has the form 

Ws4(X) = 0 (1) 

with the Schrodinger operator 

~ , = 2 i m  a , - t ~ ~ - 2 m ~  

where the potential V is Galilean invariant. Equation (1) is covariant under the 
following space-time transformations 

x’ = ut + A x  + a  

t ’ = t + r  

and the wavefunction transforms as 

4 ’ (x ’ r ’ )  = exp[im(u AX +lu2 t ) ]4 (x t ) .  (4) 

The generators which relate the transformations of equations (3) and (4) are those of the 
quantum mechanical Galilean group 

P o = i a ,  

P = -iV 

Lki = -i(xk ai -xi a&) 
Loi = i(t ai - imxj). 
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Equations ( 5 )  together with the generators 

form the Lie algebra of the Schrodinger group (Hagen 1972, Niederer 1972). 

Schrodinger operator W, give 
The commutations of these two generators of equations (6) and (7) with the 

[ w ~ ,  ~ ] = 2 i ( 2 i m  a,+v2)-[2mv,  D] (8) 

(9) [ w,, C ]  = 2it(2im 8, + 0') - [ 2 m ~ ,  c]. 
Therefore the free Schrodinger equation is covariant with respect to the generators of D 
and C, whereas the general Schrodinger equation (1) usually is not. The covariance of 
equation (1) implies 

[ V, D ]  = 2i V (10) 

[ V, C ]  = 2itV. (11) 

[ V , x . V ] = 2 V  [V, td , ]=O.  (12) 

Insert equations (6) and (7) into (10) and (11) respectively, we have 

Equation (12) is the covariance condition of the potential. The general solution of 
equation (12) has the form 

where constant Ai,,,,in is symmetric with respect to the indices i, . . . i,. Equation (13) 
gives the general form of the potential V with which equation (1) is covariant under 
group S. 

I should like to thank Professor A 0 Barut for useful discussions. 
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